

Accelerator Beam
Dynamics on
Multicore and GPU
and MIC Systems

James Amundson
and

Qiming Lu
Fermilab

Synergia

Synergia: A comprehensive
accelerator beam dynamics package
http://web.fnal.gov/sites/synergia/SitePages/Synergia%20Home.aspx

Accelerator Simulation Group
James Amundson, Paul Lebrun, Qiming Lu, Alex Macridin, Leo

Michelotti, Chong Shik Park, (Panagiotis Spentzouris) and Eric Stern

The ComPASS Project
High Performance Computing for Accelerator Design

and Optimization
https://sharepoint.fnal.gov/sites/compass/SitePages/Home.aspx

Funded by DOE SciDAC

http://web.fnal.gov/sites/synergia/SitePages/Synergia%20Home.aspx
https://sharepoint.fnal.gov/sites/compass/SitePages/Home.aspx

Topics

● Accelerator beam dynamics
● Parallel scaling in Synergia
● Why we need to move on
● A GPU implementation
● Early MIC results
● Toward a next-generation Synergia

Computational Beam Dynamics

● 50-1000 steps/revolution
● Internal and external fields

● External field calculations
trivially parallelizable

● Internal field calculations
require PIC

● Minimal bunch/field structure

● Existing and planned
accelerators
● 1,000s of elements

● 10s of types of elements
● 1,000s to 1,000,000s of

revolutions
● 1-1000s of bunches of O(1012)

particles

Parallel Scaling in Beam Dynamics

● Challenge: beam dynamics simulations are big problems
require many small solves
– Typically 643 – 1283 grids (2e5 – 2e6 degrees of freedom)
– Need to do many time steps (1e5 to 1e8)

● Typical pure-PIC scaling applies to scaling with respect to grid
size
– Including decomposing particles by grid location
– In beam dynamics, external fields can cause particles to move over

many grid cells in a single step
● Communication required to maintain decomposition and load balance

– Point-to-point communication
– Complicated for both programmer and end-user

● Change in physical parameters can change communication time by x100

Particle (lack of) decomposition

● First step: eliminate particle decomposition
– Requires collective communication

● But not point-to-point
● Collectives are typically highly optimized

– Simpler for programmer and end-user

Communication avoidance

● Second (breakthrough!) step: redundant field solves
– Field solves are a fixed size problem
– More calculation, less communication
– Allows scaling in number of particles and/or bunches
– Can use arbitrary unit size, but one node is usually best

Scaling

Single-bunch strong scaling from

16 to 16,384 cores

32x32x1024 grid, 105M particles

Weak scaling from

1M to 256M

particles

128 to 32,768 cores

Weak scaling from

64 to 1024 bunches

8192 to 131,072

cores

Up to over 1010

particles

Scaling results on ALCF machines: Mira (BG/Q) and Intrepid (BG/P)

Why am I here?

● Synergia runs on a wide variety of platforms

ODROID-U3
(ARM A9)

laptops and desktops

Linux clusters

Cray

Blue Gene

Why? continued

● Interesting and useful beam dynamics cover a
tremendous range of computing requirements
– All of the platforms on the previous slide are useful
– We typically emphasize the extraordinarily large

● Our specialty

● We target all end users, including those who
are not experts in cluster- or supercomputing

Why GPU/MIC/Multicore?

● The future of supercomputing
● The future of desktop computing
● I anticipate a new class of target hardware:

single box with a few GPUs and/or MICs
– Cheaper to obtain and maintain than a Linux

cluster
– Easier to use

Optimizing for GPUs and Multicore

● Shared memory is back!
– Some things get easier, some harder

● Charge deposition in shared memory systems
is the key challenge

● Multi-level parallelism very compatible with our
communication avoidance approach

Charge deposition in shared memory

Charge deposition in shared memory – solution 1

Charge deposition in shared memory – solution 2

GPU and Multicore Results

Comparison of CPUs and GPUs

P
ro

pa
ga

te
 ti

m
e

(s
)

0
10

0
50

0
60

0 596s

45s

74.6s

29.0s 26.4s
12.0s

Xeon X5550
Wilson Cluster
Tesla C1060 x1
Tesla C1060 x4
Kepler K20 x1
Kepler K20 x4

OpenMP results GPU results

Just charge deposition Full (toy) simulation

Intel MIC results

● One selling point for Intel MIC architecture: cores are
similar to traditional Intel architecture – major
changes may not be necessary...

MIC pure MPI

What next?

● Need to take advantage of MIC SIMD

● Early criticism of GPU “speedups”: What if you spent the same effort
optimizing your non-GPU code?

● Work toward unified production code

– Leverage optimization efforts for all architectures

cluster supercomputer MIC GPU

communication
avoidance

X X X X

memory
offloading

X X

SIMD X X X O

Real-world problem (in progress)

● Study emittance growth over 100,000
revolutions in GSI SIS18 accelerator
– Effects of statistical noise appear to be important

71 steps/turn
7,100,000 steps
4,194,304 particles
29,779,558,400,000 particle-steps
1,238,158,540,800,000 calls to “drift”

Yes, that's over a quadrillion

Optimizing “drift”

● External field calculations (including drift) in Synergia provided by
CHEF
– C++, predates Synergia by over a decade
– Designed for deep analysis of single-particle physics
– The genius: the same code propagates particle coordinates and

polynomials in particle coordinates
● Non-linear map analysis

– Synergia has to convert each of its particles to a CHEF particle (and back)
each half step

● 60 trillion conversions each way
– This overhead is our “abstraction penalty”

Abstraction Penalty

SIMD implementation

● Use SIMD instructions to work on 2, 4 or 8 particles at once
● Different C++ implementations on different platforms

– Intel/AMD: vectorclass
● http://www.agner.org/optimize/#vectorclass
● Great!

– MIC: mic/micvec.h
● Provided by Intel
● Not quite great

– Blue Gene: vector4double extension
● Provided by IBM
● Type and functions, no operator overloading
● Painful, write-only

● Efficiency requires transpose of particle data
– Boost MultiArray simply takes a flag

http://www.agner.org/optimize/#vectorclass

SIMD-enhanced results

Overall Speedup
● Abstraction penalty reduction, SIMD, magic factor

Conclusions

● Accelerator beam dynamics leads to specialized PIC
calculations
– With a wide range of problem sizes

● Current Synergia has excellent scaling characteristics on
traditional architectures

● Working toward a production version of Synergia for new
generation
– Leveraging optimization efforts across platforms
– Optimizing systems large, small and in-between

Backup slides

Hardware

● Intel12: dual-socket, six-core Intel Westmere
● AMD32: quad-socket, eight-core AMD Opteron
● MIC: Intel Xeon Phi 5110P

Drift routine

template <typename T>
inline void drift_unit(T& x, T& y, T& cdt, T& xp, T& yp, T& dpop,
 double length, double reference_momentum, double m,
 double reference_time) {
 T inv_npz = invsqrt((dpop + 1.0) * (dpop + 1.0) - xp * xp - yp * yp);
 T lxpr = xp * length * inv_npz;
 T lypr = yp * length * inv_npz;
 T D = sqrt(lxpr * lxpr + length * length + lypr * lypr);
 T p = dpop * reference_momentum + reference_momentum;
 T E = sqrt(p * p + m * m);
 T beta = p / E;
 x += lxpr;
 y += lypr;
 cdt += D / beta - reference_time;
}

// T can be double, Vec2d (SSE) , Vec4d (AVX), F64vec8 (~AVX512)
// T can also be (CHEF) Particle::Component or
// JetParticle::Component (polynomial calculation)

QPX drift routine
inline void drift_unit(vector4double& x, vector4double& y, vector4double& cdt,
 vector4double& xp, vector4double& yp, vector4double& dpop,
 vector4double const& length, vector4double const& reference_momentum,
 vector4double const& m, vector4double const& reference_time) {
 vector4double one = {1,1,1,1};
 vector4double inv_npz = rsqrtd4(

vec_sub(
vec_sub(

vec_mul(vec_add(one, dpop),
vec_add(one, dpop)),
vec_mul(xp,xp)), vec_mul(yp,yp)));

 vector4double lxpr = vec_mul(vec_mul(length, xp), inv_npz);
 vector4double lypr = vec_mul(vec_mul(length, yp), inv_npz);
 vector4double D = sqrtd4(vec_add(vec_add(vec_mul(length,length),

vec_mul(lxpr,lxpr)), vec_mul(lypr, lypr)));
 vector4double p = vec_add(reference_momentum,

vec_mul(reference_momentum, dpop));
 vector4double E = sqrtd4(vec_add(vec_mul(p,p), vec_mul(m,m)));
 vector4double beta = vec_swdiv_nochk(p, E);
 x = vec_add(x,lxpr);
 y = vec_add(y,lypr);
 cdt = vec_add(cdt, vec_sub(vec_swdiv_nochk(D, beta),reference_time));
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

